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1. INTRODUCTION

The performance evaluation of finite element methods has recently drawn
a large attention. The question is strictly related to the development of a
suitable set of benchmark problems upon which to verify and possibly to
compare the accuracy of different finite elements. In here we refer to the
proposed set of problems made by_McNgal and Harder [1], the comparison studies
of Robinson and Blackham [2], [3] and, for a comprehensive up~to-date review
of the matter, the proceeding [4].

In this paper we consider the benchmark problem of a simply supported
uniformly loaded rhombic plate. There are important questions related to the
computation of such a problem. For example, which conclusions can be
reasonably drawn from the results and how to interpret the rapid deterioration
of the accuracy as the skewness becomes larger. Moreover, does the
computation of the skew plate illustrate adequately the sensitivity of the
finite elements to the skewness or is there some other aore relevant effect to
be considered? We shall show that the effect due to the skewness of the
elements of the decomposition is negligible, the main effect being the
singularity of the solution due to the presence of obtuse corners in the plate
domain.

The design of benchmark problems should be made so as to be really
representative for a well described class of problems and effects. Therefore,
the selected problems need to be known in all their aspects that can influence
the performance cof the finite element solution. For example, it is well known
that a special method or approaéh can be designed to perform very efficiently
but only for a very narrow class of problems. Therefore attention should be

placed also on the class of problems for which the test is characteristic.




Otherwise conclusion based on benchmark computations could be very

- misleading. There are, of course, many other questions. Among them: how to
aesign "academic" benchmark problems isolating single effects which can then
lead to useful conclusions for non-academic environments; how to assess
robustness and reliability of the method; how to estimate the computational
complexity of the method.

Obviously ccneclusions based or. benchmark computation can never be
completely objective. Nevertheless useful information can be drawn when base&
on the state of the art of both theoretical and experience field. The
reliability has to be understood not only with respect to a particular
mathematical model but, in addition, also the model has to be considered. For
example, how accurate is the solution of the Kirchhoff model of a rhombic
plate compared with the solution of three dimensional linear elasticity
problem.

Thraughout the paper we will address the above questions, focusing
mainly on which type of conclusions can be inferred from the results of

computation with different finite elements of a simply supported uniformly

loaded rhombic plate. The following aspects will be especially analyzed:

1. Effect of the skewness of the element of the decomposition.
2. Effect of the singularity of the exact solution,
3. How to improve the performance of the finite element solution when
the skew angle of the plate become small,
- 4. Relation between accuracy and computational complexity for various
finite element methods on a given class of problems.

5. Class of problems the benchmark skew plate is representat.ve of.




The outline of the paper is the following. In Section 2 we introduce
the model problem and characterize, in a suitable mathenatical way, the
properties of the exact solution of the problem. Section 3 is devoted to the
description of the finite elements used for computations, together with some
abstract convergence results. In Section 4 we present the numerical
results. First we consider the case of uniform decomposition, then we -
consider an éppropriatc non-uniform decomposition allowing to considerably
reduce the magnitude of the error. The study of the relation between accuracy
and cost of computation ends Section 4. Finally, in Secticn 5 the conclusions

are shown.




2. THE MODEL PROBLEM
We are interested in the Kirchhoff model for the simply supported plate

with parallelogram shape. Let us denote by @ the domain of the (x1,x2)-
24

plane occupied by the plate, let I' = U be its boundary, Ai, i=1,4,
i=1

its vertices and @ = Q UT. Let a denote the skew angle of the plate.
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Fig, 2.1. The domain of the plate.

We assume the plate loaded by a traasversal load g(x1,x2). We denote
by HK(Q) the standard Sobolev space of the functions with squaré-“integrable
derivatives up to the order k. We will also use the Sobolev spaces with
fractional derivatives defined in the usual way by interpolation techniques
. (e.g. the K-method; see [5] for details). We also mention the Besov spaces

Bkoain) which are very close the the spaces HK(Q), namely




2.1 H(Q) c B§ (n) c HKE(q) €>0
?
(see [5] for more details). Further we denote

2.2 %2(g} = {u € HA(R): ul|; = O}.
The exact sclution Ug of our problem caa now be defined as the

minimizer of the quadratical functional F(u) over oHZ(Q), where

2.3 F(u) = B(u,u) - Qu),
2 2 2 2. .2 2 2
1 3 3% 3% _ (3
2.4 Buw = zoff (&g +2) -20-w(F & - (535 )] axpax)
Q ax1 3x2 ax1 ax, 1772 X
2.5 Quw = [ glxq,x,) u dxqdx,
Q . .
3
2.6 D = —EEE—E—',
12(1-v7)

E is the Young's moduluns, t the thickness of the plate and v the

Poisson's ratio.
The expression B(u,u) has the meaning of the (strain) energy of the

plate,

Y
2.7 Y, Ju} > Julp = Blwy,w? > v, ju} Y, >0
) B ’ 2 W2 gy o

° and has all the properties of a norm. Later we will measure the error

2.8 e = UO - UFE

between the exact solution Uy and the finite element solution Vg in the




(energy) norm defined by 2.7. It is easy to see that this measure is
equivalent to the error in the moments measured in LZ(Q), i.e. in the least

square way over Q.

Remark ..1. The formulation 2.3-2.5 has proper meaning for a general domain

Q.

It follows easily by 2.3 and 2.7 that the solution uy exists for any
given load g(xq,x,) € HO(Q) = L,(Q) .(i.e. space of the square integrable

functions) and that it is unique.

Remark 2.2. The solution exists for a large class of loads. For example, a
concentrated load (g(x;,x5) = Dirac's function) is allowed due t¢ the

inclusion HZ(Q) < Co(ﬂ).

In the following we will concentrate on the case of loads given by
analytic functions on §. A representative of this class is g{xq,x5) = 1,
i.e. uniformly distributed load. (This example will be considered in the
benchmarkuproblem). In this case the solution ugy is an analytie function

on @ - U Ai' i.e. ug is not analytic at the vertices Ai but is
i=1
analytic at all the rest of the boundary. In the neighborhood of the vertex

Ay (and A3) the solution has the form

T

—

2.9 uy = er” ® sin —— ¢ + smoother terms,
T=a

where a (0 < & < ®%/2) 1is the angle indicated in Fig. 2.2a. In the

neighborhood of the vertex Ay (and A,) we have




I

. n
2.10 Uy = cra sin 3 6 + smoother terms. .

With r,6 we denote the polar coordinates with the origin in A, (resp. Az)

as shown in Fig. 2.2a,b.

Figure 2.2a,b. Polar coordinates around the corners.

The soluticn ug has a strongest singular behaviour in. the neighhor-
hoods of the vertices A1 and A3. We see that the singularity becomes
stronger as o + 0 and, for any a, Uy € H3(9). In fact, we can show that,

for z >a>0

2 )
2.11 uge HS(R), ve>O,
2.12 Y o= 2+ =2,
=
Moreover
2.13 ug ¢ H'(Q) but uye BY (@)
. 0 o € B2, ol8).

Remark 2.3. The regularity of the exact solution of theiproblem plays a

crucial role in the performance of the finite element method. In [6] we have




10

characterized the smoothness of the solution in the framework of countably
normed spaces and used those results in relation with the analysis of the
performance of the h-p version of the finite element method (see [7,8], [9],

[(10l).

Remark 2.4. The singularity of the solution of the simply suppcrted Kirchhoff
plate caused by the corner of the domain leads to some paradoxical properties
of the solution. Consider, for example, the problem of a simply supported
plate with Poisson's ratio v = 0, with the shape of a regular n-sided
polygon inseribed into a cirecle of radius R, uniformly loaded with a load

q. Let u, be the solution. Further, let u, be the solution of the

n

analogous problem for the circular plate of radius R. The solution u_ is

n
defined by 2.3-2.5 and it is uniquely determined for every integer n,n =
3,4,... and u, * u, as n > =, but, and this is the paradox, u, # Uqye At

the center C of the plate we have

4
2,14 u,(0,0) = 1imu (0,0) = -8 4,

® o n 64 I
2.15 uc(0,0) = - %E Ru % ’

where I is the momentum of inertia. This means a difference of more than

40%!. The implications of this result (referred to as Babuska paradox) have

been addressed in various papers (see e.g. [11], [i2], [£13], [14]).
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3. THE FINITE ELEMENT APPROXIMATION

We are interested to solve numerically the problem defined by 2.3-2.5
using a finite element approximation. To this end we define the finite
dimensional space S of the finite element solutions and then we minimize the
functional F(u) in 2.3 over the space S. The core of the finite element
method, in‘its simplest form, is essentially the construction of a suitable
finite element space S. First a triangulation (or other partition) is
established over the set @ and then the space S 1is constructed. The
éuality of the finite element solution is determined by the properties of S.

We will consider in the following three different finite elements for
plate bending problems:

a) Argyris element (ARGY)

b) reduced Hsieh-Clough-Tocher element (HCTR)

¢) dual hybrid element (HYBR).
It is well known that a quite large number of elements for plate is described
in the scientific literature and many of them are implenented in the finite

element codes. A rough but effective classification can be made dividing the

elements in two categories: conforming and non-conforming, depending on

whether or not S C 0HZ(Q). We have restricted curselves to the above
mentioned elements, all of them conforming, although similar analysis as we
present could be carried out for other elements as well.

Let us briefly describe the finite elements we have used, together with

their basic properties.
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The Argyris element

The conformi .y of a plate element can be obtained in different ways. In
the Argyris element the cl-condition (i.e. continuity of the functions of S
and of their first derivatives), which implies S C 0HZ(Q) is satisfied
through the use of a complete space of degree 5 (see [15], [16]). This
corresponds to 21 degrees of freedom per triangle, as shown ;n Fig. 3.1. In
particular the value of the displacement, together with its first and second
derivatives, is imposed at the vertices, the normal derivative‘is prescribed
at the midpoint of each side. We recall that the number of d.o.f. is very
close of the optimal one (18, see [17]) neeaed to insure the cénformity when

(only) a polynomial space is used.

Fig. 3.1. The Argyris element (ARGY).

The reduced Hsieh-Clough-Tocher element
The original Hsieh-Clough-Tocher element is a composite one: the basic
- element is subdivided into three triangles and then on each subtriangle a
complete cubic polynomial is defined. After imposing the C1-continuity at

the vertices and across the sides of the subtriangles only 12 of the initial
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30 d.o.f. remain: di3placement and its first derivatives at the vertices,

*  normal derivative at the midpoint of each side. The reduced element (see Fig.
3.2) is obtained eliminating the degrees of freedom normal derivatives. This
correspond to require the cubic polynomialg on each subtriangle to have linear
normal derivatives on the sides. The dimension of the space associated to the
element, 9, is optimal in the sense that this is the lower possible number
of d.o.f. required for a conforming element. We mention that this element is
used in several commercial codes. For more details we refer to [181, [19],

[20].

2,

Fig. 3.2. The reduced Hsieh-Clough-Tocher element {HCTR).

The dual hybrid element
The basic idea for the so-called hybrid finite elements was first
suggested by Pian and Tong [21]. We refer to [22] for a clear exposition of
the features of this approach for solving linear solid mechanics problems.
‘ The element we have used has been extensively analyzed, both from thecoretical
" and numerical standpoint, by Brezzi and Marini (see [23], [24], [25]). The

main aspect of the finite element is the particular choice of the displacement

approximation space, formed by cubic polynomials only defined at the boundary




14

of the triangle. Obviously, the functions are in some way extended to the
whole triangle, but the computations requires only the values at the
interelement boundaries The degrees of freedom are shown in Fig. 3.3 and
consists of values of displacement and ivs first derivatives at the

vertices. The dimension of the approximation space is 9.

2,
Fig. 3.3. The dual hybrid element (HYBR).
Let us now recall the approximation properties of the elements we have:

THEOREM 3.1. Let the triangulation of Q be quasi-uniform(satisfying the
minimal angle condition), the solution uy € (@) n %4%(Q), k > 2 (integer

or fractional). Thenthe following estimate holds:

3.1 Ju, - uol. < onlugl
0 FE'E 0 Hk(ﬂ)
with
3.2 u = min(k-2,4) for ARGY
3.3 p = min(k-2,1) for HCTR, HYBR,

where h is the maximum size of the elements of the decompositien, C is a




.constant depending on the aspect rafio, the skewness of the elements and the
type of the finite element.

Theorem 3.1'is related to the standard h-version of the finite element
method. As the number N of degraes of freedom is (asymptotically) of
order w2 e can re-write relation 3.1 in the form

< o P

3.4 o

fu, - u_ ) .
0 FEfE HK(Q)
Theorem 3.1 is formulated in a general way. For the problem of uniformly

loaded simply supported skew plate we can state the following:

THEOREM 3.2. Let the triangulation of @ be quasi-uniform (satisfying the
minimal angle condition) and tha load be .aniform on R|. Then there exi:st two
aonstant C1 and C2 such that the following estimate holds:

‘Z:;%; y
3.5 C,N L '“FE'-,E < CN R

where thie constants C, and Cg depend on the aspect ration, the skewness of
the elcueats, tne finlég element itself {ARGY, HCTR or HYBR), but are
independent of N (i.e. the rate of corvergence is the same for all three
elements).

‘Theorem 3.2 shows that the rate of convergence, and therefore the
accuracy, deteriorates while the skew angle o decreases. This behaviour is
almost independené of aspect ratio and skewneas of the elements as these
influence only the constants C; and C,. The theorem holds not only for our
choice of elements but it is mo;e general, the only exception being the case

when special elements with the shape funetions of the form 2.9 are used (this




is, for example, the reason of the performance of the element ELFIN in the
~somparative study made by Robinson [261).

Thecrem 3.2 has only asymptotic character when the constants are not
specified. Obviously, in practice, these constants are important and beachmark
computations may characterize them well for partieular classes of problems.

So rar we have addressed only the case of quasi-uniform mesh. If the

mesh is properly refined then we have the following:

THEOREM 3.3. Let the load acting on the plate be uniform on § and the mesh
decomposition properly selected. Then there exist constant C1 such that the
following eatimate holds:

-}
< cN

3.6 luo - uFE'E < C

with n =4 for ARGY, w =1 for HCTR and HYBR. Further for any mesh
Czn‘%ﬂ £ |u0 - “FE'E where 02 >0 depends'only on skewnees of ;he elémenta.
o

Theorem 3.3 shows that the performance of ARGY is especially good‘when
proper design of the mesh is made. We will show that this choice will permit .
the acnievement of a higher accuracy.

Theorems 3.1, 3.2 and 3.3 follow from the standard mathematical theory
ot finite elements (see e.g. [19], [27]).

So far we have discussed only the performance with respect to the energy
norm measure of the error. Analogous behaviour is expected for other norms of
the accuracy. We will partially address questions of this type in the

following section.
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y, THE BENCHMARK PROBLEM COMPUTATION

In this section we compare the performance of the finite elements
described in Section 3. We will analyze energy and displacement errors with
respect to the numbers of degrees of freedom and the cost of computational
work. Quite often in the literature only the relation between error and
degrees of freedom is shown. Although this is a very important characteriza-
tion, the most important information is the relation between accuracy and
computational cost. The latter depends, of course, on different factors
(programming technique, solver algorithm, etc.) which make it not completely
well defined while the first characterization has a completely precise
meaning. Nevertheless, using standard level of programming and suitable

description of the machine cost very reliable informations can be obtained.

4,1, THE UNIFORM MESH DECOMPOSITION

We first consider the case of uniform mesh. In Fig. 4.1 an example of
such a mesh i3 shown.

We have solved the skew plate problem for fcur different values of the

skew angle a: 80°, 60°, 40°, 30°.

YAV AVAVAYS
AV AVAVAYS
SNAANANNS
PAVAVAVAVAY:

Fig. 4.1. A uniform mesh with triangular elements.
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The physical data of the plate are the following:

side length 1.0 in
Young's modulus 3. x 107 lb/in2
Poisson's ratio 0.3
thickness 0.1 in
load 1. 1b/in2

First we show the relation between the energy norm of the error and the
number of degrees of freedom. Let EEX denote the exact energy of the
plate, EFE the energy of the finite element solution. The relative energy
norm IeIER of the error e = Uy = upg can be expressed (using basic

properties of the finite element solution) in the following way

lelg ey Epp %
. _ (PEx""FE, %
4.1 IelER = ]GSIE % = (—_EE;—-) 100.

Figures U4.2a-d show the results for different values of a when a mesh of the
type shown in Fig. 4.1 is used. 1In each figure results for ARGY, HCTR and
HYBR elements are given. Both the scales are of logarithmi3 type. In all the
cases the ARGY element give better performances. This is expected when the
sirgularity is still weak (i.e. a = 80°), but it happens for each value of

o which supplies the information about the constants C1 and 02 (see

Theorem 3.2). Within each test the order of convergence is nearly the same
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Fig.4.2a-d. Energy norm of the error against number of degrees of freedom for

uniform mesh.

The slope of the triangle denotes, in each figure, the theoret-
ical rate of convergence.
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for the three different methods. In the figures the theoretical order is
shown. As the error is (see 3.5) of order
_%.JE_

4,2 N "¢
the slope of the lines is expected to'be close to the value -% ;%; . A quite
good agreement between theoretical and computational order of convergence can
be seen. We note, as expectea, the rapid increasing of the error when o
becomes smaller. In particular in Fig. 4.2a,b,c the same scales have been
used to emphasize the deterioration of the accuracy while o assumes the
values 80, 50, 40. Due to the magnitude of the error a different scale is
used in Fig. 4.2d (a = 30°).

Let us now consider the displacement of the plate. Let uyy(0) denote
the value at the center of the plate computed by Morley ([{28], [29]) using
series expansion, uFE(C) the flnitg element solution. The relative

displacement error is simply defined as

uMO(C) - uFE(C)
uﬁo(c)

4.3 D% ) » 100.
Figures 4.3a-d give the error D% against number of degrees of freedom. The
behaviour of the displacement error is roughly the same as the error in the
energy rReem. This is not surprising due to the relation linking energy and
displacement (i.e. the error in the energy is the average error in
displacement).

Let us now explain the reason of the deterioration of accuracy as a
becomes smaller, Obviously when a decreases the skewness of the elements

increases and, at the same time, the results worsen. This fact sometimes
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seems to lead to the conclusion (see [26]) that the effect of the skewness of
the elements is the reason of worsening. The major factor is the change of
the smoothness of the exact solution in dependance of a and not the skewness
of the elements. To illustrate this fact let us compute the error when meshes
of type shown in Fig. 4.4 b and d (in Fig. 4.4 a and ¢ the usual meshés are
shown). Of course, the skewness of meshes 4.4 b and d is larger than the one
of 4.4 a and ¢, respectively. Figures 4.5a-d compare the measure in the
energy norm of the error for both normal and 'skewed' meshes. The continuous
lines refer to the normal mesh, the dashed lines to the 'skewed' mesh.

Figures U4.6a-d show analogous results for the displacement error.

VAVAVAVAV L LT
NN

Y

-Fig. 4.4a-d. Examples of mesh used to evaluate the sensitiveness of the
numerical solution to the gkewness of the elements of the decomposition.
Left: 'natural' mesh; right: 'skewed' mesh.
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We see that the singularity of the solution and not the skewness of the
elements is the main reason for the change of performance of the method. Only
a relatively slight contribution is given by the 'skewed' mesh negligible

compared with the influence of the singularity.

Remark 4.1. Of course the form of the triangle, more precisely its maximal
angle (see [30]) has essential influence on convergence (i.e. when it is

violated convergence does not cecur at all). Nevertheless, in our case the
maximal angle of any triangle is far enough from = and thus its effect is

negligible compared with the smoothness effect.

4,2, The non-uniform mesh decomposition

The presence of singular behaviour at the obtuse corners of the plate
makes the moments unbounded. The rate of .convergence (see 4.2) is so small
that uniform mesh gives completely unacceptable results. In example, for
a = 30°, extrapolating the error behaviour shown in Fig. 4.3d, we see that a
numoer of degrees of freedom N > 106(!!) is needed to achieve a 5% accuracy
for the displacement at the center of the plate. If we properly refine mesh
then Theorem 3.3 applies and much hetter results can be achieved, especially
for the ARGY element. The optimal meshes need to be graded in the place where
singular solution occurs. Figures 4.T7a-d show a sequences of refined meshes
used in the computation. Figures 4,8a-d show the error in the energy norm
against the number of degrees of freedom for angles a = 80°, 60°, LQ°, 30°.
The performance of the ARGY element with the non-uniform meshes of Fig. 4.7 is
reported, together with the results related to uniform meshes. Also the slope
related to the theoretical order given in Theorem 3.3 is shown in the figures.
The improvement of the accuracy is really effective, especially when a

becomes smaller.
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10*

Fig. 4.5a-d.

Energy norm of the error ag:cinst number of degrees of freedom

for uniform mesh: with 'natural' mesh (continuous line) and 'skewed' mesh
(dashed line).

" ENERGY NORM ERROR vs. 0.8.F. o ENERGY NGRM ERROR vs. 0.O.F.
" v Ty v ——r Ty - v YT T v LB e e 2
8 | g |
" x
: 3
glo' o glol - *—~.~'0 -
< r : b P
> [ ~ |
o e 3
s ¥ : T
———0 ARGY ———b—0 OHGY
§ o—e—s8 HCIR [ o—e—- ICIR
o—o—=0 HYBR o—e——0 HYBR
10* L s s aaal L A e d ot " : PRI R | ok i Y S '
10° 10° T 0
& degress of freedon & dogreees of freedom
AP = 80 ALPR = 60
ENERGY NORM ERROR vs. 0.8.F. ENERGY NORH ERRER vs. 0.0.F.
100 dl L L. e 100 L LA LA L ALALLE .
80 [} N b
- 0 -
8 8
(.w = o o}
$ $
: H
20 - 2 o
———0 ARGY ¢———% ARGY
o——ea—a HCIR o——e—u HCTR
=0 HYBR O——=o—=0 HYBR
A A P AT WS | A Py PYRT S A P T W AT W S | A A PR n
(o 10t 10 10 10
& dogrece of freeden & degrese of freedom
. Arf =40 ° APR = 0

1w




10*

ot DISPLACEHMENT ERROR vs. D.0.F. o OISPLACEMENT ERRBR vs. 0.0.F,
- ] e AR A —r A A SRR 3 v oy oV v oyrry ¥ M p
(0':—
8 | 810
ol s «
s $
:
: :
: :
- F <
_.:. | 3 1
10":‘
L o—o——0 HYBR
" 2 a2 2 st A 4 A4 4 a2 22 ,o-l 4 " du a2 241 A e ded At b
s " e 13 100
& degrees of frecde. & degreer of freedem
AP = 80 AR = 60
- OISPLACEHENT ERRER vs. D.8.F. 100 OISPLACEMENT ERROR vs. D.8.F.
- v Ty Y - Ty " T
A o}
5 ok
g | g |
: Lo
b 2
2k = |
it :
20 3
S F 2
S H
s [ Sxol
—da——4 ARGY ————0 ARGY
|  o—e—e HCIR o—a-—a HCTR
—e—=0 HYBR o—~o6—=~6 HYBR
o 5 Lotn s 2l . PPN s etz oa s aad A . dda st
1¢* 10t 10* 1¢* 1¢* 10
¥ dogracs of fresdem # dogrece of frocden
ALPHR = 40

AR = 0

Fig. 4.6a-d. Relative displacement error at the center of the plate against
number of degrees of freedom for uniform mesh: with 'natural' mesh
(continuous line) and 'skewed' mesh (dashed line).
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N XD

Fig.4.7Ta-d. A sequence of non-uniform decompositions with refinement around the
. obtuse corners.
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The mesh shown in Fig. 4.7 are geometric meshes with a factor ¥%. This
tprAof decomposition is effective as far as the major contribution to the
error appears in the smallest element, due to the singularity of the solutior.
If the'singularity is not strong enough such a2 geometric mesh is not effective
because the major error comes out of the larger internal element. This
behavior can be seen in Fig. 4.8a (o = 80°, weak singularity). However,
after a certain number of successive refinements analogous situation will
occur for the other angles as well. When this phase is reached simultaneous
refinement around the singularity location and outside should be made.

Figures 4.9a-d show the error in the displacement at the center of the
plate. Again, the slope of the theoretical convergence rate (that is twice
the order of the energy norm) is indicated.

We see that the ARGY elemgnt, which is of higher degree, performs very
well in the case of non-uniform mesh. This is among others due to the fact
that higher order finite elements are able to better "absorb" the singulari-
ties of the solution, as shown in [32], [33] in relation tc the p-version of
the finite element method.

It is necessary to note that ARGY element is overconstrained (i.e. the
second derivatives at the vertices are used). This can sometimes lead to
difficulties (not present in the problem we are dealing with). For exampie,
when the plate change thickness the second derivatives of the solution are not
continuous while the overconstraining enforces continuity. Nevertheless, a
simple adaptation of the elements, using the fact that the character of the
discontinuity is known, can avoid the difficulty. Another well known cases

are those when boundary condition changes from clamped type to nonclamped and

in corners of clamped boundary (which can be delt with by a proper refinement
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of the mesh). Hence the results of the discuased benchmark is representation

for simply supported polygonal plates.

4.3. Accuracy and computational work

The comparison accuracy - number of degrees of freedom is the most used
in the scientifie literature. However, given a problem to solve within a
certain range of precision, the most important relation is between accuracy
and cost of computation. This should be, and indeed gt is in practical
environment, the eriterium upon which to rest the selection of the most suit-
able finite element. Only recently this problem has been approached froa a
quite general standpoint (see [34]). Hereafter we will give only some general
lines of this important question, focusing mainly on the numerical results
obtained with the finite elements previously described. The finite element
computation requires the execution of the following steps:

a -~ topology, mesh generation

b local stiffness matrices

¢ - assembly and solution

d - postprocessing {i.e. computation of required data).
Sometimes assembly is combined with computation of local stiffness matrices.
The cost of the mesh generation and the zost of postprocessing are not too
much sensitive to the elements. On the other hand, parts b and c depend
heavily on the type of finite element. Toward a simple approach we will only
consider the cost of parts b and e. As regards the accuracy, we have already
seen that different measures can be used (é.g. energy norm, L, norm, etc.).
We will especially consider the energy norm although pointwise accuracy could

be examined as well. The conclusion we will base on the energy norm will

essentially hold for pointwise accuracy.
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ete.) and software (programmation technique, ete.). Nevertheless, it is
reasonable to assume that the state of the art programming will lead to
acceptable and objective conclusions. Of course, some very special techniques
could influence the conclusions but this has to be corsidered as 2z "different"”
method (as it is the case for parallel computer oriented methods, which are
not optimal for sequential machines and could give better performances).

The results presented throughout the paper has been obtained using an
Apollo 410 computer. The programs are performed in a standard way and are
included in the finite element library MODULEF (see [35]). The final linear
system is solved via elimination method based on the Choleski factorization.

In Fig. 4.10a,b the time for the computation of local stiffness
matrices, resp. for assembly and solution, against the number of degrees of
freedom is shown. As expected, in both the figures the time spent is larger
for ARGY than HCTR and HYBR element, depending mainly on the dimension of the
elementary stiffness matrix.

As previously said we are interested in accuracy versus cost and this is
the subject of Fig. 4.11a-d where the cost is represented as total time for
computation of local stiffness matrices, assembly and solution while the error
in the energy norm is chosen for the accuracy.

Analogous result hold for the displacement error at the center of the
plate. We compared the performance of the elements ARGY, HCTR and HYBR on a
uniform mesh. In addition, we have also shown the performance of the ARGY
element for refined mesh. (Such a mesh needs more work to generate.) The
proper mesh refinement has larger effects on the performance of the higher
degree element than the lower degree, hence, for the refined mesh the

comparison will be still more favorable for ARGY.
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Fig. 4.10a,b. Time for computation of local stiffness matrices against number
of degrees of freedom (a). Time for assembly ard solution against number of
degrees of freedom (B) (HCTR and HYBR connect).
Remark 4.1. We analyzed the performance of the finite element method to solve
the plate problem according to the mathematical model based upon the Xirchhoff
theory. Of course, the question about the validity of such a model is essen-
tial. We can formulate the plate problem as a 3-dimensional elasticity pro-
blem and give it (exact) solution the meaning of true solution. Then we can
compare this value with the (exact) solution of the Kirchhoff (2-dimensional)
model.
It is well known that as the thickness t + 0 the 3-dimensional
- solution converges to the 2-dimensional one (see, e.g. [36], [37]1, [38],
- 403, [41]1). The accuracy of the Kirchhoff solution depends very much on both

thickness ¢ and skew angle a.
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Denote by u, v, w the 3D displacement of the plate and let us model the
simple support by constraining w = 0 at the sides boundary surface while
leaving u and v unconstrained. Let E3D be the exact (strain) enargy of
the 3D formulation, EK the Kirchhoff one. Then the quantity

E.. -E_ Y%
1y EE = (-—3—%:—————)2

is very close to the relative error of the Kirchhoff sclution in the energy
norm {1ike in relation 4.1). 1In fact, for v =0, ¢ is the exact relative
error measured in the energy norm.

Sincs the uniform load is g = 1, we have:

M.S E3D = j W3D dxl de,
Q

u.6 EK = J' WK dX1 dXZ,
f

.7 E3D - EK = I (W3D'WK)dX1 dXZ,
Y]

where w3ps Wy denote the vertical displacement in the 3D and Kirchhoff
model, resp. Hence, EI = (EE)2 is the relative average error in the dis-
placement at the loaded surface.

Table 4.1 shows the value EE, ED for t = .0.01 and various values
a. The values E3D have been computed out of the results obtaired using the
code STRIPE (with p-version capability), developed by the Computat.ional
Mechanics Center of the Aeronautical Research Institute of Sweden (see [391]),
on the CRAY X=MP/48 of the Pittsburgh Supercomputing Center (PSC). A careful

extrapolation technique, based on the results for different values of p and

meshes,; has been applied. The values Ex have besn computed with analogous
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extrapolation technique, based on the results for different values of p and
meshes, has been applied. The values EK have been computed with analogous

procedures out of the numerical results described in the subsections 4.1-4.3.

TABLE 4.1
SKEW ANGLE  ERR ERR2
SR -1* SO 11,85 _____.1.36__
8O 17.89 3.20__
SR, 1 S 3370 11.37__
30 38.17 14,57

- 000 T s et e 8 e e s T e e e A st Dl s s o s o et

ERR1: % ERROR IN THE ENERGY NORM
ERR2: % AVERAGE DISPLACEMENT ERROR

thickness = 0.01
Poisson's ratio = 0.3

We see that the Kirchhoff model gives unacceptable results except for
plates either close to the square shape or with very small thickness. In a
forthcoming paper we will address in details the reliability 6f various plate
models of Reissner-Mindlin type and discuss the accuracy of their finite

element approximation.
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5. CONCLUSIONS

- Let us summarize the conclusions which can be drawn from the benchmark

computation of the uniformly loaded simply supported skew plate with Kirchhoff

formulation.

1. The major reason of the error dependance on the skewness of the
plate is the singularity of the solution and not the skewness of the element
of the decomposition. Hence this benchmark problem is not well suited for
comparing different elements except for the case when the performance in
presence of strong singularity of the solution needs to be evaluated.

2. The problem characterizes well any polygonal simply supported plate
subject to analytic load. The solution in the neighborhood of a critical

vertex with internal angle B (see Fig. 5.1) has, for any B8 such that
-1

(%) is not integer, the following expression:
s K
2+ —gl 7K —Eg 7K
u = C,r sin — 08 + C,r sin — 6 + smoother terms
1 B 2 B
nK1
with K1, K2 integers and since u € HZ(Q) we have to have 2 +-7;-> 1
TK
2

and —E_ > 1. Hence the major singularity term is:

ki)

u = CrB sin g 0 for 0<B <™
2—%‘- -

u = Cr sin =~ @ for & <8 < 2m.

B

. For example, the L-shaped domain with 8 =

W

7 should be compared with a skew

() plate with skewness angle a = U5e°,
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Fig. 5.1. A reentrant corner in a L-shaped domain.

Therefore, with proper correspondence the benchmark problem can be applied
quite generally.

3. The higher order-elements provide better accuracy (in the engineer-
ing range) than the lower ones for the same computational cost, both in pres-
ence of singularity and for smooth solution, either for uniform or properly
designed meshes. By accuracy we mean the‘érror in the energy norm or point-
wise error. The computer cost takes into account computation of local stiff-
ness matrices, assembling procedure and {(direct) solving time. The relation
between accuracy and cost are in agreement with the theoretical model
introduced in [34].

4. Because anisotropic plates, after proper coordinates transformation,

) has the same (or very similar) properties of isotropic ones, the conclusions
-hold also for this case. Of course, the notion of the angle is now not only

geometrical but depends also on the anisotropy. For example, the finite ele-
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W ment of an anisotropic square plate behaves %“hen as the solution of an

o€ . isotropic skew plate.

&

%
E elasticity solution could not be acceptable for larger skewness of the plate.
)

5. Accuracy of the Kirchhoff model compared with 3 dimensional linear
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The Laboratory for Numerical analysis is an integral part of the
Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

0 To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

© To help bridge gaps between computational directions in engineering,
physies, ete., and those in the mathematical community.

0 To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

0 To be an international center of study and research for foreign
students in numerical mathematies who are supported by foreign govern-
ments or exchange agencies (Fulbright, ete.)

Further information may be obtained from Professor I. BabuEka, Chairman,
Laboratory for Numerlical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.




